Generalized Entropy Concentration for Counts

نویسنده

  • Kostas N. Oikonomou
چکیده

We consider the phenomenon of entropy concentration under linear constraints in a discrete setting, using the “balls and bins” paradigm, but without the assumption that the number of balls allocated to the bins is known. Therefore instead of frequency vectors and ordinary entropy, we have count vectors with unknown sum, and a certain generalized entropy. We show that if the constraints bound the allowable sums, this suffices for concentration to occur even in this setting. The concentration can be either in terms of deviation from the maximum generalized entropy value, or in terms of the norm of the difference from the maximum generalized entropy vector. Without any asymptotic considerations, we quantify the concentration in terms of various parameters, notably a tolerance on the constraints which ensures that they are always satisfied by an integral vector. Generalized entropy maximization is not only compatible with ordinary MaxEnt, but can also be considered an extension of it, as it allows us to address problems that cannot be formulated as MaxEnt problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shannon entropy in generalized order statistics from Pareto-type distributions

In this paper, we derive the exact analytical expressions for the Shannon entropy of generalized orderstatistics from Pareto-type and related distributions.

متن کامل

The generalized dependency degree between attributes

by the dependency degree ␥, a traditional measure in Rough Set Theory, we propose a generalized dependency degree, ⌫, between two given sets of attributes , which counts both deterministic and indeterminis-tic rules while ␥ counts only deterministic rules. We first give its definition in terms of equivalence relations and then interpret it in terms of minimal rules, and further describe the alg...

متن کامل

Bound states and the Bekenstein bound

We explore the validity of the generalized Bekenstein bound, S ≤ πMa. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width a. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters wellknown difficulties with negative Casimir energy and large species number...

متن کامل

Quantile Approach of Generalized Cumulative Residual Information Measure of Order $(alpha,beta)$

In this paper, we introduce the concept of quantile-based generalized cumulative residual entropy of order $(alpha,beta)$ for residual and past lifetimes and study their properties. Further we study the proposed information measure for series and parallel system when random variable are untruncated or truncated in nature and some characterization results are presented. At the end, we study gene...

متن کامل

Combinatorial Information Theory: I. Philosophical Basis of Cross-Entropy and Entropy

This study critically analyses the information-theoretic, axiomatic and combinatorial philosophical bases of the entropy and cross-entropy concepts. The combinatorial basis is shown to be the most fundamental (most primitive) of these three bases, since it gives (i) a derivation for the Kullback-Leibler cross-entropy and Shannon entropy functions, as simplified forms of the multinomial distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.00297  شماره 

صفحات  -

تاریخ انتشار 2016